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Noncommutative Classical Mechanics

A. E. F. Djemai?3

In this work, | investigate the noncommutative Poisson algebra of classical observables
corresponding to a proposed general noncommutative guantum mechanics, Djemai, A.
E. F. and Smail, H. (2003). | treat some classical systems with various potentials and

some physical interpretations are given concerning the presence of noncommutativity
at large scales (celestial mechanics) directly tied to the one present at small scales
(quantum mechanics) and its possible relation with UV/IR mixing.
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1. INTRODUCTION

It is well-known that quantum mechanics (QM) can be viewed as a noncom-
mutative (matrix) symplectic geometry, (Djemai, 1996), generalizing the usual
description of classical mechanics (CM) as a symplectic geometry.

Inthe context of the algebraic star—deformation theory, QM was also described
as ah-deformation of the algebraly of classical observables. The procedure
consists to replace the operator algebra issued from standard quantization rules
by the algebrad; of “guantum observables” generated by the same classical
observables obeying actually a new internal law other than the usual point product,
the so-called Moyal star-product, (Bayetral, 1977, 1978; Flatetal,, 1975, 1976;
Moyal, 1949; Vey, 1975), such that the “classical” limit is guaranteeti by 0.

This is the program of “quantization by deformation” carried out by Lichnerowicz
etal.

Moreover, in the lattice quantum phase space, (Djemai, 1995, 1996), the
discretization paramet&%1 can be interpreted as a deformation parameter. It is
also well-known that, as the “classical” limit — O ensures the passage from
QM to CM, the passage, for instance, from relativistic CM to nonrelativistic CM is
ensured by the “classical” limi = { — 0, wherev is the velocity of the classical
particle and c is the light velocity.
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Recently, there has been a big interest in the study of various physical the-
ories: string theory, (Chu and Ho, 1999, 2000; Conetesl.,, 1998; Douglas and
Hull, 1998; Schomerus, 1999; Seiberg and Witten, 1999), quantum field theo-
ries, (Chaihiaret al, 2001, 2002; Szabo, 2001), QM, (Acatrinei, 2001; Bellucci
et al, 2001; Christiansen and Schaposnik, 2001; Gamboa et al., 2001a; Gamboa
et al, 2001b; Ho and Kao, 2001; Kochan and Demetrian, 2001; Morariu and
Polychronakos, 2001; Nair and Polychronakos, 2001), condensed matter, (Ezawa,
2000),..., on nhoncommutative spaces. Furthermorre, the notion of noncommu-
tativity may receive different Physical interpretations. The most particular one
consists to do the parallel between the mechanics of a quantum patrticle in the
usual space in presence of a magnetic feldnd the mechanics of this quantum
particle moving into a noncommutative space. Furthermore, SUSY, through its
Z,-graded algebra, may be viewed as a particular case of noncommutativity. This
means thasuperpartner®f ordinary quantum particles can be studied only if one
considers a particular kind of noncommutativity, namely SUSY. Moreover, the
deformation parameter seems to bliadamental constarwhich characterizes
the Physics described on a noncommutative space.

The aim of this work is, following the general formulation of noncommu-
tative quantum mechanics (NCQM) proposed in Djemai and Smail (2003) and
generalizing the approach of (Romero and Vergara, 2003; Mirza and Dehghani,
2002) to discuss the associated noncommutative classical mechanics (NCCM) and
to treat some particular examples of classical potentials.

The work is organized as follows. Section 2 is devoted to a brief and me-
thodic presentation of the passage from CM to QM, and from QM to NCQM in
view to fix notations. In Section 3, | derive the associated NCCM and discuss
different aspects concerning the star-deformed Poisson algebra and the result-
ing motion equations. In Section 4, | treat different cases of classical potentials
V (x) like the free particle, the harmonic oscillator and, in particular, the grav-
itational potential. The parallel between this latter classical case and Coulomb
potential in QM is discussed. Finally, | devote Section 5 to some conclusions and
perspectives.

2. CM — QM — NCQM

Let us first start by consideringdassical systerwith an Hamiltonian:

p2
HX,p)=—+V 1
(X, p) = 5 + V() (1)
where the coordinates and the momentg;,i = 1,..., N, generate the algebra

Ao over the Classical Phase Space (CPS) with the usual Poisson structure:

X, Xj}p =0, {X,pjlp=23ij, {pi,Pj}p=0
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or in terms of phase space variablgsa =1, ..., 2N:
{Ua, Up} = wap

wherew is called theclassical symplectic structurand is represented by the

2N x 2N matrix:
_ 0 Inxwn
““—tyn 0
with Det{w) = 1.
Moreover, the motion equations of the classical system are given by:

Xi ={x,H}, p={p,H}

Now, consider @irac quantizationof this system:
1
{fv g}P - m[ofv Og]

where we denote b§) ¢ the operator associated to a classical observapleith,
in particular,Oy, = x; and O, = p;. These operators generate the Heisenberg
algebra:

[xi,xj] =0, [xi,p;]=1ihs&;1, [pi,p;]=0.

Furthermore, the motion of this quantum system is governed byathenical
equations

Xi =[x, Hl, pi = [pi, H]
where:
p2

H(x, p) = om + V(X).

Itis well known also that thiguatizationis equivalent to d-star deformation
of Ag such that the Heisenberg operator algebra is replaced by the aldgbra

{Xi, Xj}h =0, {X,pj}n=10hsij, {pi,pj}h=0 2

generated by the same classical observables but now obeying a Moyal product:

[
(f xn g)(U) = exp[i hwaba;”aé,ﬂ f (U9 vy

where:

b

o®Pwpe = 8%
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and

{f,glh=Txng—g*n f.

Let us now consider anotherstar deformation of the algebré,, such that
the internal law will be characterized not only by thendamental constart
but also by another deformation parameter (or more). This can be performed by
generalizing the usual symplectic structure into another more general one, say
aap. For instance, let us consider the algebta equipped with the following
star-product, (Djemai and Smail, 2003):

ih
(f *na O)(U) = exp[;aaba;&”aé”] (UGl ®3)

o Gij Sij + 0jj
b:
: —&j —oij B

where theN x N matricesd andg are assumed to be antisymmetric:
b = €ij %, Bij = eij "B

while o is assumed to be symmetric and it will be neglected since it is of second
order, (Djemai and Smail, 2003). This new star-product generalizes the relations
(2) in the following way:

such that

{Xi, Xjha =160, (X, Pjthe =008 +0ij), (P, Pj}ne =ihB;

and so gives rise to a NCQM defined by the following generalized Heisenberg
operator algebra:

[Xi, Xjle =061, [Xi,pjle =1h(Sij +0ij)L, [pi,pjle =1hBIj1L.

In (Djemai and Smail, 2003), we have found that the matris tied to the
anticommutator ob with g, and that the determinent of the matsixs given in
function of p = Tr(68) = Tr(B6). If we impose to the determinent to be equal to
1, then one obtains that:

which is deeply linked to the Heisenberg Incertitude relations.

3. NONCOMMUTATIVE CLASSICAL MECHANICS

The purpose of this paper is precisely to studyntbacommutative classical
mechanicswvhich leads to the NCQM as described in the previous section. The
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passage between NCCM and NCQM is assumed to be realized via the following
generalized Dirac quantization

1
{fv Oty — m[ofr Og]a'

It follows that our Noncommutative classical Mechaniiss described by
the a-star deformed classical Poisson algeldiagenerated by the classical po-
sition and momentum variables obeying to this new internal law, namely (3)
withouti h:

1
(f % O)(U) = exp[iaaba;“aéz’} f (U)o

such that:
i Xjle = 6Gij, X, Pite = &ij +0ij, {Pi, Pl = Bij- 4)
Using the Hamiltonian (1), we get the following Hamilton’s equations :
pi AY 1 pi Vv
Xj = {Xi, H}¢ = — +9|] BXJ +_Ulj p] N_I+9|J ax; %)
. oV oV oV .
Pi={pi,H}a=—a|+ ﬂup —Uuaj——mﬂLEﬁiij- (6)

In the noncommutative configuration space, the classical particle obeys the
following motion equations:

mx ov + mé, _82V X
= = — i *
! axi 1\ 9% k

+[(1+ 0)BAL+ o) ikXk

o+ (Lt )0 + (Lt o)L+ o) el (g—;’k)

N ey VN 4 | ok
~—— ik | *
axi XX |

+ 0(6?) + O(B?) + O(o). (7)

wherel means the X 3 unit matrix.

The first term in the right side of this equation, that can be obtained by taking
theclassical limit(¢ = g = 0), represents the usual expression of a conservative
force which derives from a potenti¥ll(x) present on the commutative space (The
second Newton law). The second term, which has been found in Romero and
Vergara (2003), expresses a first correction to this law depending on the presence
of a noncommutativity only on the configuration spaée4 0 and 8 = 0) and
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also on the variations of the external potentgk), (Romeroet al,, 2002). The

third term, that is a kinetic correction term, reflects a second correction due to
the presence of a noncommutativity only on the momentum sector of the classical
phase spac# (= 0 andg # 0).

Hence, this result is very general in the sense that it takes into account the
noncommutativity on the whole phase space, since we have shown in (Djemai
and Smail, 2003), that the presence of a noncommutativity on the configuration
space characterized by the paramétevill automatically imply the presence of
a noncommutativity on the momentum sector characterized by the paragsneter
such that the two parameters are subject, through the parameierlower bound
constraint:

o = Tr[6B] = Tr[BO] = —26- = —16.

Indeed, the two parameters may exist and vary simultaneously but are tied
by the above constraint which has a direct physical interpretation (Heisenberg
incertitude relations), (Djemai and Smail, 2003).

Moreover, we remark that, in addition to the classical first term in (7), there
is an additional term given in terms %f that can be interpreted as the presence of
some kind ofviscosity(resistivity) in the phase space due to its noncommutativity
property and also to the variations of the potential.

Let us now consider a particular transformation on the usual classical phase
space (CPS) that leads to the same results as &f,tldeformation on CPS, like
the nontrivial commutation relations (4) or the motion equations (5), (6), or (7).
Indeed, following the same approach as in (Djemai and Smail, 2003), we introduce
the following transformation on usual CPS:

X =% — %9” P, P=p+ %,Bijxj (8)
Firstly, it is easy to check that:
X, Xjlp =6, X, pjlp =&j +aij, (0, Pjlr = Bij- )
where the symmetric & 3-matrixo is given by:
1
o= —é[eﬂ + B0].

Then, the usual Poisson brackets give the following Hamilton’s equations:

,/ ’ / p/ av/

Xi ={x, H }P=E'+9ik o, (10)
., P aV’ 1 ,
piz{piaH}Pz—W'Faﬂika (11)
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which looks like (5) and (6) respectively, and taking care to consider only first
order terms irp and/orp.
The motion equation on the usual configuration space is given by:

Vv’ 92V’ .,
M = =3¢ |:m9ij (W) + ﬂiki| Xk (12)

which looks also as the relation (7), but now we are dealing with commutative
variables.

4. EXAMPLES OF CLASSICAL SYSTEMS

Let us treat now some examples of classical systems: A free paiiti® &

0), an harmonic oscillatoM(x) = %sz), and a gravitational potential/(r) =

_K
)

4.1. Free Particle

In the case of a free classical particle described on the noncommutative CPS,
the motion equation (7) reduces to:

mX; = BikXk = m)7 =\7/\B.

This situation looks like the study of the motion of a classical particle of
chargeq described on the classical phase space in presence of a magnets: field

B =0B (13)
The quantum analog of this classical system behaves in the same way, such
that the gauge invariant velocity operafothat defines the translation operator

U (&) = exp{i §a.V} on the noncommutative configuration space do not commute
in the sense of (4):

. h
Vi, Vjla =|ﬁ6i|§,3k

and do not associate:
h? . -
[Vlr [V21 V3]0t]04 + [V3, [Vlv VZ]a]ot + [VZ: [V31 Vl]a]ot = ﬁvﬂ

This means that the quantum free particle of charge a noncommutative
phase space looks like the well-known quantum mechanical problem of an ordi-
nary quantum particle moving in the configuration space in presence of a magnetic
source, specifically a magnetic monopole. If we do the parallel between the two
situations, then this will lead to the interpretation of the presence of a noncommu-
tative perturbation on the phase space as a magnetic source (13). In this framework,
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the occurring of a nontrivial three cocyalg, (Jackiw, 1985):

drV,B

w3 = —

27h

in the usual QM in presence of a magnetic source is deeply tied to a certain
topological perturbation of phase space since its triangulation covering at very
small scales means that the phase space is no longer commutative.

In the simple case Wher/éz ﬂlz, which means that the noncommutativity
is present only on the plang,f), this implies a presence of magnetic field in the
direction ofz-axis and so perturbs tha,{) plane.

However, within our framework, in the case of a free particle, we have:

Mm%, = Bk = ef' 54 = (VA ) = q(V' A B),

We conclude that a free particli (= 0) on the usual CPS is now no longer free
on the NCCPS. The noncommutativity on CPS appears to be equivalent to the
presence of some magnetic fidhd= q‘lﬁ

4.2. Harmonic Oscillator
Let us consider now the example of an harmonic oscillator characterized by
the potential:

V(x) = —kx ikxi *g X

In this case, the noncommutative Hamilton’s equations (5) and (6) read:
X = % +koyxj, Pp=—kx+ %,Bij Pi

and the motion equations on the NC configuration space become:

—[B+mldijx; +kx =0
or equivalently:

my + i AV +kX =0
where

A =mkd+ B
Investigating these motion equations, one finds that this classical dynamical

system on NC configuration space behaves like a harmonic oscillator with the

same frequency, = \/% but in the plane perpendicular to the directioniof
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Let's consider, for instance, the simple case whieee uk, (01 = 6, = p1 = po =
0 andu = uz = B3 + mkds). Then, one has:

mXq, + Kxg = uxo
mXy + Kxo = —uXq
mxs + kxs =0
The third equation confirms the fact that along thaxis the system still
behaves as a harmonic oscillator with the same frequency. Nevertheless, its motion

inthe (X, y)-plane is governed by the two first mixed equations. Investigating these
two equations, we find:

1 . . . ) 1
Em[xl *o X1+ Xo % Xo] + Ek[xl *o X1 + X2 *g X2]

= }mvz + }krz = Hy, = Constant.
2 2

This looks like the expression of a conserved Hamiltonian of a planar
oscillator.

Finally, we conclude that, in this case, our 3D harmonic oscillator on
noncommutative CPS splits into two conservative harmonic oscillators:

H = Hyy + H,

where
1 . . 1
H, = me3 %y X3+ Ekx3 %o X3

Let us now consider our approach based on considering the primed commu-
tative variables. In this case, the potential is given by:

1
V' =V(X) = Ekx’2

and we can show that one obtains the same results as before. Nevertheless, let us
discuss the correction terms that occur in the new Hamiltonian:
1 -
H=H-—Lu
2m H’

This confirms the fact that our 3D harmonic oscillator on noncommutative CPS
is equivalent to the usual 3D harmonic oscillator of charge presence of some
magnetic field:
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4.3. Gravitational Potential

Let's consider a particle of mass and chargey moving in a gravitational
potential:

k
wherer = /X; %, X' . Let’s set:
k
Qi = r—39|
which we will call theangular velocity Then, the NC Hamilton’s equations read:
. Pi kxi pi L o
Xj = E-}-@ijr—S = —+(X/\Q)i
: kX kX
pi=- r3+ ,3|J :__+_( )
and the motion equations on the NC configuration space become:
. X k iK . iK -
mx; = _I‘_Ir_z + mEiJk(Xj Qi + X Q) + EiJka,Bk
or equivalently:
N k )_(' - - - g - - k i - N N -
my =—r—zF-l-m(X/\Q—i-XAQ)—i-X/\,B=—r—2r—+X/\a+XA0 (14)
where

- - km—> - -

These equations of motion are different from the ones obtained in Romero
and Vergara (2003) by a term that comes from the noncommutativity parageter
which is not considered there.

Moreover, it is straightforward to check that the Hamiltonian is a constant of
motion:

k
——[pl* P+ Pi % p]+V(r)——p.p +o —xX' =0

and that the components of the angular momentum of th|s system on NCCPS are
no longer conserved:

NC _ ik c_mk. . c G (7 A S

L™~ =¢ X;*pc =L —r—S[X/\(X/\G)]i =Ly —mXA(XAQ)
where:
LS = &/ x; (mxy)

is the conserved angular momentum on usual CPS.

Nevertheless, the component along shaxis of the angular momentum is
conserved:

[l
I_l
Ql
I|
\;
Q
X
~
3
X
=
o
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On the other hand, we remark from (14), that relatively to &dhaxis our
system still remains “classical”, i.e
. k X-0 15
my-o = 2y (15)
Then, it is more indicated to study the motion of the system in the plane
perpendicular to thé& axis. For this reason, in the following we will consider
only one independent noncommutative parameter, namel/os = 8 + me,
with 6, = 0, = 1 = B> = 0 andd = 03, B = Bs, Q = Q3. Firstly, along thes
axis the motion of our system is governed by (See (15)):
oV kX3
0X3 - rs
Now, let us express the motion equations (14) of this system om fieflane
in terms of polar coordinateg ( ¢):

mip - i =~ 13+

(16)

) k ) )
pop = ——5 + MppQ + pp
P (17)

d 251 d L g L
a[mp ¢]——pa(p6)— mpdt(pﬂ) Bop

where we have considered the case of equatorial okits § = r = p).
Itis easy to check from (17), that the quantity:

M = p2(m¢ + o) — mGV—ép _mp¢+ p g
is a constant of motion sindd = 0.

Returning to the equation (17), we find:

m"+k M2+3kM6P_0
P T md T T T

where we have neglected second order ternisand .

In order to deduce the trajectory equatipn= p(¢), let us introduce the
following change:

U= —

P
Then, we obtain the following differential equation:

[Mu® — akmou® —ﬂu](d;u) [2kmoud +f3]< ;)2

—kmu3+ Mu* — 3kmgu® = 0 (18)

that differs from the one obtained in Romero and Vergara (2003) by additional
terms ing and missing terms of second ordewiandg.
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Inthe classical case, i.e. atthe zero orde(8 = 0), we obtain the ordinary
Kepler motion equation:

d2U0 U= 1
de2 " ° " b
where
M 2
~ km’
The solution of this equation is given by the elliptic trajectory:
1+ ecos¢
U= —""-—

b

wheree is some parameter representing the eccentricity of the ellipse.
At first order in6 and g, we propose the following solution:

U =Uup+ 0us + Buy (19)
Replacing in (18), one obtains the following differential equations:

d2
W + uy = Fu(¢)
24,

sz + Uz = F2(¢)

where

Fi= EA[Zecosa) 3e cos(2b)+$}

Fe=—W (1+ ecosg))?

The first differential equation admits the following general solution:

be [cos@b) + ecos(2;5):|

2
while the second one admits a more compllcated general solution which looks like:

W = —%a sin(¢){Ao¢ sin) + Alam‘a”r{atan@ﬂ

Ua(¢) = [e¢> sin) + & cos(@) + e2—+6]

+ Az cot(p) + Ascscip) + Aq cot(%) + As tan<%>

+ Ag cot(p) In[bug] + A7 (AsSi”(¢) + Ag sin(2¢)> }

2,2
b%ug

whereAg = —é and the other coefficients are functionseof
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Then, to first order irx and 8, the general solution of (18) is given by (19),
i.e.

u=Uo+9U1+,3U2_1+eTCOS¢) |:b39+—ﬂi|¢sm(¢)
_§
+9[...]+,9[,,,]%[1+ecos[§(l b)]:|+”.

The remarkable point is the appearance of terms lingairirthe perturbation
termsu; andu,. These interesting terms, that let the original ellipgechange
when it precesses, permit us to calculate the possible perihelion shift per revolution
due to noncommutativity:

S = 21 [%}

where:
£ = M o+ 2b®
b Me2
Taking into account that:
k=mmG, b=a(l-¢€?

wheremg is the sun mass an@” is the average radius of the ellipse, then:

8¢NC—27‘[{:;/2| + Zb;ﬂ} 271{/{294-;/(2/3}
with
m2msG
T al(1-e)?

Furthermore, it has been shown that in the context of General Relativity, the
advance of the perihelion with the Schwarzschild metric is given by, (Piretzalx
2001).

3msG
S9re = 2 { c2a(15— €) }
Then, it follows that:
dPnc = Agra
where
a(l—e’c?[ . 2
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In the particular case of the Mercury planet, and using the following data:
a~6x 10", e~0,2, m~3,3x 10%kg
ms~ 2 x 100%g, G~7x10"mkg's2 h~6,6x10*Js
we found that:
K ~ 10%%kg?/s?, 1~ 1.2 x 10'[10'70 + 50 x 10°17B]
and then, the perihelion shift is of order:
Sone ~ 27[10Y0 4+ 50 x 107 174]

Let us recall that the parametetsand 8 have been at first considered as
perturbation parameters, so they are very small, (Djemai and Smail, 2003). Then,
from the above relation, one can deduce that the contribution of the second param-
eter is very small compared to the one of the first parameter. So, we can ignore it.
In this case, our results will be very close to those obtained in Romero and Vergara
(2003). In fact, let us evaluate an order of the first parameter by compshfirg
to the experimental data.

Knowing that the observed perihelion shift for Mercury is, (Pireatial,

2001):

Shops = 27 (7.98734+ 0.0003)x 10 8rad/rev
and assuming thaipnc ~ d¢ops, it follows that:
0 ~ 8 x 10 %°s/kg

Now, since the noncommutativity effect is considered as a quantum effect of
gravity, (Snyder, 1946; Yang, 1947), let us calculate:

Vho ~ 23 x 107%m.
Moreover, General relativity predicts for the perihelion shift:
Sore = 27 (7.987344)x 10 8rad/rev

So, we can evaluate a lower bound fopy means of the difference between
the General relativity prediction of the shift and the observed one:

18¢ncl < 18¢aR — Spops ~ 4 x 1071
Then, we get:
0 <6x10% - h<40x 10%m?
— v/ho < 63x 10m~ (4 x 10%)Lp

1
- —— >16x10m?
Jho ~

whereLp represents the Planck scale.
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Now, let us return to our approach that makes use of primed variables (8). In
this framework, the Hamiltonian of our system on NCCPS reads as:

H=H-_—L%
2am- °

From (20), we can interpret the manifestation of noncommutativity on CPS as
being equivalent to the presence of some “magnetic fiBle? g~ that interacts
with our system of chargg.

In this frame work, the components of the angular momentum on NCCPS are
given by:

; 1 > -
Ky G . (o 2 2
LY=L =& xp = LF+§[XA(XA/3)—(DA9)A Pli

Moreover, itis easy to see that following our framework, we will obtain nearly
the same results as described before.

5. CONCLUSION

In this work, | have studied the noncommutative classical mechanics related to
the Noncommutative quantum mechanics as described in Djemai and Smail (2003).
The same interpretations have been given to the occurrence of noncommutativity
effects as in the quantum case. Treating the particular case of a gravitational poten-
tial, which is relevant at large scales and which looks like the Coulomb potential at
small scales, | show that there is a correction to the perihelion shift of Mercury, and
with a parametehd of the order of 16°¢ m? we are in presence of an observable
deviation.

Let us remark that the second NC paramegtatoes not contribute to this
correction compared to the contribution of the parameter

Finally, the main point in our work is the fact that the NC parameters which
are initially present at a quantum level, occur also atlarge scales. So, there is a deep
link between Physics at small scales and Physics at large scales as it is predicted by
UV/IR mixing. This confirm the results obtained in Romero and Vergara (2003).
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