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Noncommutative Classical Mechanics

A. E. F. Djemai1,2,3

In this work, I investigate the noncommutative Poisson algebra of classical observables
corresponding to a proposed general noncommutative quantum mechanics, Djemai, A.
E. F. and Smail, H. (2003). I treat some classical systems with various potentials and
some physical interpretations are given concerning the presence of noncommutativity
at large scales (celestial mechanics) directly tied to the one present at small scales
(quantum mechanics) and its possible relation with UV/IR mixing.
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1. INTRODUCTION

It is well-known that quantum mechanics (QM) can be viewed as a noncom-
mutative (matrix) symplectic geometry, (Djemai, 1996), generalizing the usual
description of classical mechanics (CM) as a symplectic geometry.

In the context of the algebraic star–deformation theory, QM was also described
as ah–deformation of the algebraA0 of classical observables. The procedure
consists to replace the operator algebra issued from standard quantization rules
by the algebraA h of “quantum observables” generated by the same classical
observables obeying actually a new internal law other than the usual point product,
the so-called Moyal star-product, (Bayenet al., 1977, 1978; Flatoet al., 1975, 1976;
Moyal, 1949; Vey, 1975), such that the “classical” limit is guaranteed byh→ 0.
This is the program of “quantization by deformation” carried out by Lichnerowicz
et al.

Moreover, in the lattice quantum phase space, (Djemai, 1995, 1996), the
discretization parameter2πN can be interpreted as a deformation parameter. It is
also well-known that, as the “classical” limith→ 0 ensures the passage from
QM to CM, the passage, for instance, from relativistic CM to nonrelativistic CM is
ensured by the “classical” limitβ = v

c → 0, wherev is the velocity of the classical
particle and c is the light velocity.
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Recently, there has been a big interest in the study of various physical the-
ories: string theory, (Chu and Ho, 1999, 2000; Conneset al., 1998; Douglas and
Hull, 1998; Schomerus, 1999; Seiberg and Witten, 1999), quantum field theo-
ries, (Chaihianet al., 2001, 2002; Szabo, 2001), QM, (Acatrinei, 2001; Bellucci
et al., 2001; Christiansen and Schaposnik, 2001; Gamboa et al., 2001a; Gamboa
et al., 2001b; Ho and Kao, 2001; Kochan and Demetrian, 2001; Morariu and
Polychronakos, 2001; Nair and Polychronakos, 2001), condensed matter, (Ezawa,
2000),. . . , on noncommutative spaces. Furthermorre, the notion of noncommu-
tativity may receive different Physical interpretations. The most particular one
consists to do the parallel between the mechanics of a quantum particle in the
usual space in presence of a magnetic fieldB and the mechanics of this quantum
particle moving into a noncommutative space. Furthermore, SUSY, through its
Z2-graded algebra, may be viewed as a particular case of noncommutativity. This
means thatsuperpartnersof ordinary quantum particles can be studied only if one
considers a particular kind of noncommutativity, namely SUSY. Moreover, the
deformation parameter seems to be afundamental constantwhich characterizes
the Physics described on a noncommutative space.

The aim of this work is, following the general formulation of noncommu-
tative quantum mechanics (NCQM) proposed in Djemai and Smail (2003) and
generalizing the approach of (Romero and Vergara, 2003; Mirza and Dehghani,
2002) to discuss the associated noncommutative classical mechanics (NCCM) and
to treat some particular examples of classical potentials.

The work is organized as follows. Section 2 is devoted to a brief and me-
thodic presentation of the passage from CM to QM, and from QM to NCQM in
view to fix notations. In Section 3, I derive the associated NCCM and discuss
different aspects concerning the star-deformed Poisson algebra and the result-
ing motion equations. In Section 4, I treat different cases of classical potentials
V(x) like the free particle, the harmonic oscillator and, in particular, the grav-
itational potential. The parallel between this latter classical case and Coulomb
potential in QM is discussed. Finally, I devote Section 5 to some conclusions and
perspectives.

2. CM→ QM → NCQM

Let us first start by considering aclassical systemwith an Hamiltonian:

H (x, p) = p2

2m
+ V(x) (1)

where the coordinatesxi and the momentapi , i = 1, . . . , N, generate the algebra
A0 over the Classical Phase Space (CPS) with the usual Poisson structure:

{xi , xj }p = 0, {xi , pj }p = δi j , {pi , pj }p = 0
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or in terms of phase space variablesua, a = 1, . . . , 2N:

{ua, ub} = ωab

whereω is called theclassical symplectic structureand is represented by the
2N × 2N matrix:

ω =
(

0 1N×N

−1N×N 0

)
with Det(ω) = 1.

Moreover, the motion equations of the classical system are given by:

ẋi = {xi , H}, ṗi = {pi , H}.
Now, consider aDirac quantizationof this system:

{ f, g}P → 1

i h
[O f ,Og]

where we denote byO f the operator associated to a classical observablef , with,
in particular,Oxi = xi andOpi = pi . These operators generate the Heisenberg
algebra:

[xi , x j ] = 0, [xi , p j ] = i hδi j 1, [pi , p j ] = 0.

Furthermore, the motion of this quantum system is governed by thecononical
equations:

ẋi = [xi , H], ṗi = [pi , H]

where:

H(x, p) = p2

2m
+ V(x).

It is well known also that thisquatizationis equivalent to ah-star deformation
of A0 such that the Heisenberg operator algebra is replaced by the algebraAh:

{xi , xj }h = 0, {xi , pj }h = i hδi j , {pi , pj }h = 0 (2)

generated by the same classical observables but now obeying a Moyal product:

( f ?h g)(u) = exp

[
i

2
hωab∂ (1)

a ∂
(2)
b

]
f (u1)g(u2)|u1=u2=u

where:

ωabωbc = δa
c
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and

{ f, g}h = f ?h g− g ?h f.

Let us now consider anotherα-star deformation of the algebraA0, such that
the internal law will be characterized not only by thefundamental constanth
but also by another deformation parameter (or more). This can be performed by
generalizing the usual symplectic structure into another more general one, say
αab. For instance, let us consider the algebraAα equipped with the following
star-product, (Djemai and Smail, 2003):

( f ?h,α g)(u) = exp

[
i h

2
αab∂ (1)

a ∂
(2)
b

]
f (u1)g(u2)|u1=u2=u (3)

such that

αab =
(

θi j δi j + σi j

−δi j − σi j βi j

)
where theN × N matricesθ andβ are assumed to be antisymmetric:

θi j = εi j
kθk, βi j = εi j

kβk

while σ is assumed to be symmetric and it will be neglected since it is of second
order, (Djemai and Smail, 2003). This new star-product generalizes the relations
(2) in the following way:

{xi , xj }h,α = i hθi j , {xi , pj }h,α = i h(δi j + σi j ), {pi , pj }h,α = i hβi j

and so gives rise to a NCQM defined by the following generalized Heisenberg
operator algebra:

[xi , x j ]α = i hθi j 1, [xi , p j ]α = i h(δi j + σi j )1, [pi , p j ]α = i hβi j 1.

In (Djemai and Smail, 2003), we have found that the matrixσ is tied to the
anticommutator ofθ with β, and that the determinent of the matrixα is given in
function ofρ = Tr(θβ) = Tr(βθ ). If we impose to the determinent to be equal to
1, then one obtains that:

ρ = −2Eθ · Eβ
which is deeply linked to the Heisenberg Incertitude relations.

3. NONCOMMUTATIVE CLASSICAL MECHANICS

The purpose of this paper is precisely to study thenoncommutative classical
mechanicswhich leads to the NCQM as described in the previous section. The
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passage between NCCM and NCQM is assumed to be realized via the following
generalized Dirac quantization:

{ f, g}α → 1

i h
[O f ,Og]α.

It follows that our Noncommutative classical Mechanicsis described by
theα-star deformed classical Poisson algebraAα generated by the classical po-
sition and momentum variables obeying to this new internal law, namely (3)
without i h:

( f ?α g)(u) = exp

[
1

2
αab∂ (1)

a ∂
(2)
b

]
f (u1)g(u2)|u1=u2=u

such that:

{xi , xj }α = θi j , {xi , pj }α = δi j + σi j , {pi , pj }α = βi j . (4)

Using the Hamiltonian (1), we get the following Hamilton’s equations :

ẋi = {xi , H}α = pi

m
+ θi j

∂V

∂xj
+ 1

m
σi j p j ' pi

m
+ θi j

∂V

∂xj
(5)

ṗi = {pi , H}α = − ∂V

∂xi
+ 1

m
βi j p j − σi j

∂V

∂xj
' − ∂V

∂xi
+ 1

m
βi j p j . (6)

In the noncommutative configuration space, the classical particle obeys the
following motion equations:

mẍi = − ∂V

∂xi
+mθi j

(
∂2V

∂xk∂xj

)
? ẋk

+ [(1+ σ )β(1+ σ )−1] ik ẋk

− [σ + (1+ σ )σ + (1+ σ )β(1+ σ )−1θ ] ik

(
∂V

∂xk

)
' − ∂V

∂xi
+
[
mθi j

(
∂2V

∂xk∂xj

)
+ βik

]
? ẋk

+O(θ2)+ O(β2)+ O(σ ). (7)

where1 means the 3× 3 unit matrix.
The first term in the right side of this equation, that can be obtained by taking

theclassical limit(θ = β = 0), represents the usual expression of a conservative
force which derives from a potentialV(x) present on the commutative space (The
second Newton law). The second term, which has been found in Romero and
Vergara (2003), expresses a first correction to this law depending on the presence
of a noncommutativity only on the configuration space (θ 6= 0 andβ = 0) and
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also on the variations of the external potentialV(x), (Romeroet al., 2002). The
third term, that is a kinetic correction term, reflects a second correction due to
the presence of a noncommutativity only on the momentum sector of the classical
phase space (θ = 0 andβ 6= 0).

Hence, this result is very general in the sense that it takes into account the
noncommutativity on the whole phase space, since we have shown in (Djemai
and Smail, 2003), that the presence of a noncommutativity on the configuration
space characterized by the parameterθ will automatically imply the presence of
a noncommutativity on the momentum sector characterized by the parameterβ,
such that the two parameters are subject, through the parameterρ, to a lower bound
constraint:

ρ = Tr[θβ] = Tr[βθ ] = −2Eθ · Eβ = −16.

Indeed, the two parameters may exist and vary simultaneously but are tied
by the above constraint which has a direct physical interpretation (Heisenberg
incertitude relations), (Djemai and Smail, 2003).

Moreover, we remark that, in addition to the classical first term in (7), there
is an additional term given in terms ofẋk that can be interpreted as the presence of
some kind ofviscosity(resistivity) in the phase space due to its noncommutativity
property and also to the variations of the potential.

Let us now consider a particular transformation on the usual classical phase
space (CPS) that leads to the same results as of the?α–deformation on CPS, like
the nontrivial commutation relations (4) or the motion equations (5), (6), or (7).
Indeed, following the same approach as in (Djemai and Smail, 2003), we introduce
the following transformation on usual CPS:

x′i = xi − 1

2
θi j pj , p′i = pi + 1

2
βi j x j (8)

Firstly, it is easy to check that:

{x′i , x′j }P = θi j , {x′i , p′j }P = δi j + σi j , {p′i , p′j }P = βi j . (9)

where the symmetric 3× 3-matrixσ is given by:

σ = −1

8
[θβ + βθ ].

Then, the usual Poisson brackets give the following Hamilton’s equations:

ẋ′i = {x′i , H ′}P = p′i
m
+ θik

∂V ′

∂x′k
(10)

ṗ′i = {p′i , H ′}P = − ∂V ′

∂̂x′i
+ 1

m
βik p′k. (11)
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which looks like (5) and (6) respectively, and taking care to consider only first
order terms inθ and/orβ.

The motion equation on the usual configuration space is given by:

mẍ′i = −
∂V ′

∂x′i
+
[

mθi j

(
∂2V ′

∂x′k∂x′j

)
+ βik

]
ẋ′k (12)

which looks also as the relation (7), but now we are dealing with commutative
variables.

4. EXAMPLES OF CLASSICAL SYSTEMS

Let us treat now some examples of classical systems: A free particle (V(x) =
0), an harmonic oscillator (V(x) = 1

2 K x2), and a gravitational potential (V(r ) =
− K

r ).

4.1. Free Particle

In the case of a free classical particle described on the noncommutative CPS,
the motion equation (7) reduces to:

mẍi = βik ẋk ⇒ mEγ = Ev ∧ Eβ.
This situation looks like the study of the motion of a classical particle of

chargeq described on the classical phase space in presence of a magnetic fieldEB:

Eβ = qEB (13)

The quantum analog of this classical system behaves in the same way, such
that the gauge invariant velocity operatorEv that defines the translation operator
U (Ea) = exp{i m

h Ea.Ev} on the noncommutative configuration space do not commute
in the sense of (4):

[vi , v j ]α = i
h

m2
εk

i j βk

and do not associate:

[v1, [v2, v3]α]α + [v3, [v1, v2]α]α + [v2, [v3, v1]α]α = h2

m3
E∇· Eβ.

This means that the quantum free particle of chargeq on a noncommutative
phase space looks like the well-known quantum mechanical problem of an ordi-
nary quantum particle moving in the configuration space in presence of a magnetic
source, specifically a magnetic monopole. If we do the parallel between the two
situations, then this will lead to the interpretation of the presence of a noncommu-
tative perturbation on the phase space as a magnetic source (13). In this framework,
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the occurring of a nontrivial three cocycleω3, (Jackiw, 1985):

ω3 = − 1

2πh

∫
dEr E∇· Eβ

in the usual QM in presence of a magnetic source is deeply tied to a certain
topological perturbation of phase space since its triangulation covering at very
small scales means that the phase space is no longer commutative.

In the simple case whereEβ = β Ek, which means that the noncommutativity
is present only on the plane (x,y), this implies a presence of magnetic field in the
direction ofz-axis and so perturbs the (x,y) plane.

However, within our framework, in the case of a free particle, we have:

mẍ′i = βik ẋ′k = εkl
i ẋ′kβl = (Ev′ ∧ Eβ)i = q(Ev′ ∧ EB)i

We conclude that a free particle (ẍi = 0) on the usual CPS is now no longer free
on the NCCPS. The noncommutativity on CPS appears to be equivalent to the
presence of some magnetic fieldEB = q−1 Eβ.

4.2. Harmonic Oscillator

Let us consider now the example of an harmonic oscillator characterized by
the potential:

V(x) = 1

2
kx2 = 1

2
kxi ?α xi

In this case, the noncommutative Hamilton’s equations (5) and (6) read:

ẋi = pi

m
+ kθi j x j , ṗ′ = −kxi + 1

m
βi j pj

and the motion equations on the NC configuration space become:

mẍi − [β +mkθ ] i j ẋ j + kxi = 0

or equivalently:

mEγ + Eµ ∧ Ev + kEx = E0
where

Eµ = mkEθ + Eβ
Investigating these motion equations, one finds that this classical dynamical

system on NC configuration space behaves like a harmonic oscillator with the
same frequencyω0 =

√
k
m , but in the plane perpendicular to the direction ofEµ:

Eµ·[ Eγ + ω2
0 Ex] = 0
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Let’s consider, for instance, the simple case whereEµ = µEk, (θ1 = θ2 = β1 = β2 =
0 andµ = µ3 = β3+mkθ3). Then, one has:

mẍ1+ kx1 = µẋ2

mẍ2+ kx2 = −µẋ1

mẍ3+ kx3 = 0

The third equation confirms the fact that along thez-axis the system still
behaves as a harmonic oscillator with the same frequency. Nevertheless, its motion
in the (x, y)-plane is governed by the two first mixed equations. Investigating these
two equations, we find:

1

2
m[ ẋ1 ?α ẋ1+ ẋ2 ?α ẋ2] + 1

2
k[x1 ?α x1+ x2 ?α x2]

= 1

2
mv2+ 1

2
kr2 = Hxy = Constant.

This looks like the expression of a conserved Hamiltonian of a planar
oscillator.

Finally, we conclude that, in this case, our 3D harmonic oscillator on
noncommutative CPS splits into two conservative harmonic oscillators:

H = Hxy+ Hz

where

Hz = 1

2
mẋ3 ?α ẋ3+ 1

2
kx3 ?α x3

Let us now consider our approach based on considering the primed commu-
tative variables. In this case, the potential is given by:

V ′ = V(x′) = 1

2
kx′2

and we can show that one obtains the same results as before. Nevertheless, let us
discuss the correction terms that occur in the new Hamiltonian:

H ′ = H − 1

2m
EL· Eµ

This confirms the fact that our 3D harmonic oscillator on noncommutative CPS
is equivalent to the usual 3D harmonic oscillator of chargeq in presence of some
magnetic field:

EB = q−1 Eµ
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4.3. Gravitational Potential

Let’s consider a particle of massm and chargeq moving in a gravitational
potential:

V(r ) = −k

r
wherer =

√
xi ?α xi . Let’s set:

Äi = k

r 3
θi

which we will call theangular velocity. Then, the NC Hamilton’s equations read:

ẋi = pi

m
+ θi j

kx j

r 3
= pi

m
+ (Ex ∧ EÄ)i

ṗi = −kxi

r 3
+ 1

m
βi j p j = −kxi

r 3
+ 1

m
( Ep∧ Eβ)i

and the motion equations on the NC configuration space become:

mẍi = −xi

r

k

r 2
+mε jk

i (ẋ jÄk + xj Ä̇k)+ ε jk
i ẋ jβk

or equivalently:

mEγ = − k

r 2

Ex
r
+m( Ėx ∧ EÄ+ Ex ∧ ĖÄ)+ Ėx ∧ Eβ = − k

r 2

Ex
r
+ Ėx ∧ Eσ + Ex ∧ Ėσ (14)

where

Eσ = Eβ + km

r 3
Eθ = Eβ +m EÄ

These equations of motion are different from the ones obtained in Romero
and Vergara (2003) by a term that comes from the noncommutativity parameterβ

which is not considered there.
Moreover, it is straightforward to check that the Hamiltonian is a constant of

motion:

Ḣ = 1

2m
[ ṗi ?α pi + pi ?α ṗi ] + V̇(r ) = 1

m
pi ṗi + k

r 3
xi ẋ

i = 0

and that the components of the angular momentum of this system on NCCPS are
no longer conserved:

LNC
i = ε jk

i x j ? pk = LC
i −

mk

r 3
[ Ex ∧ (Ex ∧ Eθ )] i = LC

i −m[ Ex ∧ (Ex ∧ EÄ)] i

where:

LC
i = ε jk

i x j (mẋk)

is the conserved angular momentum on usual CPS.
Nevertheless, the component along theEσ axis of the angular momentum is

conserved:

ELNC· Eσ = ELC· Eσ = ε i jkσi x j (mẋk)
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On the other hand, we remark from (14), that relatively to theEσ axis our
system still remains “classical”, i.e.:

mEγ · Eσ = − k

r 2

Ex· Eσ
r

(15)

Then, it is more indicated to study the motion of the system in the plane
perpendicular to theEσ axis. For this reason, in the following we will consider
only one independent noncommutative parameter, namelyσ = σ3 = β +mÄ,
with θ1 = θ2 = β1 = β2 = 0 andθ = θ3, β = β3,Ä = Ä3. Firstly, along theEσ
axis the motion of our system is governed by (See (15)):

mẍ3 = − ∂V

∂x3
= −kx3

r 3
(16)

Now, let us express the motion equations (14) of this system on the (x,y)-plane
in terms of polar coordinates (ρ , φ):

m[ρ̈ − ρφ̇2] = −∂V(ρ)

∂ρ
+mρσ φ̇ = − k

ρ2
+mρφ̇Ä+ ρφ̇β

d

dt
[mρ2φ̇] = −ρ d

dt
(ρσ ) = −mρ

d

dt
(ρÄ)− βρρ̇

(17)

where we have considered the case of equatorial orbits (ϕ = π
2 ⇒ r = ρ).

It is easy to check from (17), that the quantity:

M = ρ2(mφ̇ + σ )−mθV − β
2
ρ2 = mρ2φ̇ + 2mkθ

ρ
+ β

2
ρ2

is a constant of motion sincėM = 0.
Returning to the equation (17), we find:

mρ̈ + k

ρ2
− M2

mρ3
+ 3kMθ

ρ4
= 0

where we have neglected second order terms inθ andβ.
In order to deduce the trajectory equationρ = ρ(φ), let us introduce the

following change:

u = 1

ρ

Then, we obtain the following differential equation:

[Mu3 − 4kmθu4− βu]

(
d2u

dφ2

)
− [2kmθu3+ β]

(
du

dφ

)2

− k
m

M
u3+ Mu4− 3kmθu5 = 0 (18)

that differs from the one obtained in Romero and Vergara (2003) by additional
terms inβ and missing terms of second order inθ andβ.



P1: KEE

International Journal of Theoretical Physics [ijtp] pp1183-ijtp-485161 April 29, 2004 0:22 Style file version May 30th, 2002

310 Djemai

In the classical case, i.e. at the zero order (θ = β = 0), we obtain the ordinary
Kepler motion equation:

d2u0

dφ2
+ u0 = 1

b
where

b = M2

km
.

The solution of this equation is given by the elliptic trajectory:

u0 = 1+ ecosφ

b
wheree is some parameter representing the eccentricity of the ellipse.

At first order inθ andβ, we propose the following solution:

u = u0+ θu1+ βu2 (19)

Replacing in (18), one obtains the following differential equations:
d2u1

dφ2
+ u1 = F1(φ)

d2u2

dφ2
+ u2 = F2(φ)

where

F1 = M

b3

[
2ecos(φ)− 3

2
e2 cos(2φ)+ e2+ 6

2

]
F2 = −be

M

[
cos(φ)+ ecos(2φ)

(1+ ecos(φ))3

]
The first differential equation admits the following general solution:

u1(φ) = M

b3

[
eφ sin(φ)+ e2

2
cos(2φ)+ e2+ 6

2

]
while the second one admits a more complicated general solution which looks like:

u2 = −be

M
sin(φ)

{
A0φ sin(φ)+ A1arctanh

[
a tan

(
φ

2

)]
+ A2 cot(φ)+ A3csc(φ)+ A4 cot

(
φ

2

)
+ A5 tan

(
φ

2

)
+ A6 cot(φ) ln[bu0] + A7

(
A8 sin(φ)+ A9 sin(2φ)

b2u2
0

)}
whereA0 = − 2

e2 and the other coefficients are functions ofe.
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Then, to first order inα andβ, the general solution of (18) is given by (19),
i.e.:

u = u0+ θu1+ βu2 = 1+ ecos(φ)

b
+
[

Me

b3
θ + 2b

Me
β

]
φ sin(φ)

+ θ [. . .] + β[. . .] ≈
[

1+ ecos
[
φ
(
1− ξ

b

)]
b

]
+ . . .

The remarkable point is the appearance of terms linear inφ in the perturbation
termsu1 andu2. These interesting terms, that let the original ellipseu0 change
when it precesses, permit us to calculate the possible perihelion shift per revolution
due to noncommutativity:

δφNC = 2π

[
ξ

b

]
where:

ξ = M

b
θ + 2b3

Me2
β

Taking into account that:

k = mmsG, b = a(1− e2)

wherems is the sun mass and “a” is the average radius of the ellipse, then:

δφNC = 2π

{
M

b2
θ + 2b2

Me2
β

}
= 2π

{
κ

1
2 θ + 2

e2
κ−

1
2β

}
with

κ = m2msG

a3(1− e2)3

Furthermore, it has been shown that in the context of General Relativity, the
advance of the perihelion with the Schwarzschild metric is given by, (Pireauxet al.,
2001).

δφRG = 2π

{
3msG

c2a(1− e2)

}
Then, it follows that:

δφNC = λδφRG

where

λ = a(1− e2)c2

3Gms

[
κ

1
2 θ + 2

e2
κ−

1
2β

]
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In the particular case of the Mercury planet, and using the following data:

a ≈ 6× 1010m, e≈ 0, 2, m≈ 3, 3× 1023kg

ms ≈ 2× 1030kg, G ≈ 7× 10−11 m3kg−1s−2, h ≈ 6, 6× 10−34 Js

we found that:

κ ≈ 1034 kg2/s2, λ ≈ 1.2× 107[1017θ + 50× 10−17β]

and then, the perihelion shift is of order:

δφNC ≈ 2π [1017θ + 50× 10−17β]

Let us recall that the parametersθ andβ have been at first considered as
perturbation parameters, so they are very small, (Djemai and Smail, 2003). Then,
from the above relation, one can deduce that the contribution of the second param-
eter is very small compared to the one of the first parameter. So, we can ignore it.
In this case, our results will be very close to those obtained in Romero and Vergara
(2003). In fact, let us evaluate an order of the first parameter by comparingδφNC

to the experimental data.
Knowing that the observed perihelion shift for Mercury is, (Pireauxet al.,

2001):

δφobs= 2π (7.98734± 0.0003)× 10−8rad/rev

and assuming thatδφNC ≈ δφobs, it follows that:

θ ≈ 8× 10−25s/kg

Now, since the noncommutativity effect is considered as a quantum effect of
gravity, (Snyder, 1946; Yang, 1947), let us calculate:

√
hθ ≈ 23× 10−30m.

Moreover, General relativity predicts for the perihelion shift:

δφRG = 2π (7.987344)× 10−8rad/rev

So, we can evaluate a lower bound forθ by means of the difference between
the General relativity prediction of the shift and the observed one:

|δφNC| ≤ |δφGR− δφobs| ≈ 4× 10−14

Then, we get:

θ ≤ 6× 10−32→ h ≤ 40× 10−62m2

→ √hθ ≤ 63× 10−32m≈ (4× 104)LP

→ 1√
hθ
≥ 1.6× 10−30m−1

whereLP represents the Planck scale.
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Now, let us return to our approach that makes use of primed variables (8). In
this framework, the Hamiltonian of our system on NCCPS reads as:

H ′ = H − 1

2m
ELC· Eσ

From (20), we can interpret the manifestation of noncommutativity on CPS as
being equivalent to the presence of some “magnetic field”EB = q−1 Eσ that interacts
with our system of chargeq.

In this frame work, the components of the angular momentum on NCCPS are
given by:

LNC
1 = L ′i = ε jk

i x′j p′k = LC
i +

1

2
[ Ex ∧ (Ex ∧ Eβ)− ( Ep∧ Eθ ) ∧ Ep] i

Moreover, it is easy to see that following our framework, we will obtain nearly
the same results as described before.

5. CONCLUSION

In this work, I have studied the noncommutative classical mechanics related to
the Noncommutative quantum mechanics as described in Djemai and Smail (2003).
The same interpretations have been given to the occurrence of noncommutativity
effects as in the quantum case. Treating the particular case of a gravitational poten-
tial, which is relevant at large scales and which looks like the Coulomb potential at
small scales, I show that there is a correction to the perihelion shift of Mercury, and
with a parameterhθ of the order of 10−56 m2 we are in presence of an observable
deviation.

Let us remark that the second NC parameterβ does not contribute to this
correction compared to the contribution of the parameterθ .

Finally, the main point in our work is the fact that the NC parameters which
are initially present at a quantum level, occur also at large scales. So, there is a deep
link between Physics at small scales and Physics at large scales as it is predicted by
UV/IR mixing. This confirm the results obtained in Romero and Vergara (2003).
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